
IAD-AIt 978 NEW CONFIDENCE INTERVAL ESTIMATORS USING STANDARDIZED 1/1
TIME SERIESCU) CORNELL UNIV ITHACA NY SCHOOL OF
OPERATIONS RESEARCH AND INOU D GOLDSNAN ET AL

UNCLASSIFIED DEC 84 TR-J-84-15 NeflB4-81--00837 F/G 12/ i L_,



11111 ~ I~ 128 *2

IIIIII11111 1.8125 1.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

-S

A

'N



00 SCHOOL OF INDUSTRIAt AND
SYSTEMS ENGINELHINU

GEORGIA INSTITUTE OF TLLHNULOGY
ATLANTA, GEORGIA 303-32

I TECHNICAL REPORT NO. J-84-15
December, 1964

NEW CONFIDENCE INTERVAL ESTIMATORS
USING STANDARDIZED TIME SERIES

by

David Goldsman

and

Lee Schruben

DTIC
DECTE

E

>-.This research was partially supported by the Office of Naval Research
Clunder contract N00014-81-k--0037 at Cornell University. Lee SchrubenB )ig on the faculty of the School of Operations Research and Industrial
FIEngineering, Cornell University, Ithaca, NY 14853.

6-1

kwfp public zeIlcms and =a W

djz tr bu t t I n~ m t d

J±2 2 069



Abstr art

We develop new confidence interval estimators for the underlying mean

of a stationary simulation process. These estimators can be viewed as

generalizations of Schruben's so-called standardized time series area

confidence interval estimators. Various properties of the new

estimators are given.
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In thiT, note, we present new confidence interval estimators for

the underlying mean m of a stationary simulation process. ihese

estimators can be viewed as generalizations of the so-called area

estimators given in Schruben (1983) and Goldsman (1984).

Consider the stochastic process X1,... ,X,. Define

Xj -k~l ,j=l,....m
X. 4.j=l Xk

a lim mVar(X ) , andm ® m

LmtJ (XmX Lit
T re ( t )  =, O<t<l,

m~m

where L-J is the greatest integer function. T m(t), O<t<l) is

called the standardized time series. Schruben (1983) proves that if

XI,...,X m is a stationary, o-mixing, finite variance sequence of

random variables (satisfying one other technical condition), then as

m40, Tm (t) converges in distribution to a standard Bromnian bridge

process, {Bt, O<t<l). Also, the standardized time series is

asymptotically independent of mX m

Remark: It is well known that B t  Nor(Ot(l-t)) and Cov(Bt ,Bt2 =

minlt I t2 ) (1-max (tI t2 )).

Define A E M c T (k/m) , the c 'S being pre-specified.
m k1I k m k'

For large m, A ::. (is approximately distributed as) aNorO,V), where

2 j i/m, kk/m

IM



It will be comiputationally conve, nient to approximate V by lettanq
ms and L -- mt (so that djdk - m:dsdt), Thus,

V I m - *,1 1 M c Ck min(j/m,k/m)[1-max(j/m,k/m)]
m

I JI Cmscmt min(s,t)}1-max(s,t)] dsdt

= 2 J t ms Cmt s(l-t) dsdt . (1)

2 2
So A /V :: (1), and this is called the weighted area

estimator for the variance a.2

Suppose now that we work with the process X 1 ,...,Xn, where n=bm,

and that this series satisfies Schruben's conditions. Divide the

process into b contiguous batches, each of size m; i.e., X

X(i-l)m+2 , ... , Xim comprise batch i, i=l,...,b. Each individual

batch can be standardized: For i=l,...,b and j=1,...,m, let

- (average of the first j X's
ij Ik=l (i-1)m+k from the i-th batch),

Xn nX=l Xk (grand mean),

LmtJ (x i m- Xi, Lmtj

T (t) , O<t<l, and

A lk=l ckTi (k/rm)

For large enough m, each of the standardized time series [theV4
T . mCt) 's is approximately distributed as a Brownian bridge; so A.

aNor(O,V), i=1,...,b. Further, for large m, we can treat the batches

as if they were (approximately) independent. This yields:

.,A . - .,,.... ,.,..-.. ., . . .".-. ", ,,. . ,. . -, . -,., . . . . . - , , . .



1 b 2 2 2

An immediate consequence o4 iheorem 21.1 of Billingsley (196UJ) is that

-X n l
Z n - Nor(O,1)n uV

Then the asymptotic independence result above gives:

Z
n Nor(0,1) t(b)

1/) 1/2
12 31 2  [ 2 b  1 2

A2bV

We finally obtain confidence interval estimators for a:

1 b 2 1/21

Pr E X n tb,2[ n i=l Ai j J 1- , (2)

where t, is the upper-v quantile of the t(b) distribution.

We consider various choices for the weights (the ck'S). These

choices and their resulting V's [from the integral approximation (1)3

are summarized in Table 1.

Remarks:

- (i) After choosing the weighting sequence {c.), the associated V from

Table 1 is used in (2) to form a confidence interval estimator.

(ii) The calculation of V from (1) is straightforward (but sometimes

tedious).

Example: For choice 3 (from Table 1),

'0
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V J% 0 s(l-s ) s(I-t) ds dt

I' 1 d dt -2 1'n(l-t) dt
0 U (1-s)t J t-

(iii) The variance estimator which results from choice I (the equal

weighting case) is asymptotically the same (as m4w) as the so-called

area variance estimator from Schruben (1983).

(iv) For each standardized time series, (Tim(m)), choice 2 grants

greater weight for 'small' values of t. Choices 3 through 6 give

comparatively little weight to the middle (t ::. 1/2) of each

standardized time series.

(v) Table 2 summarizes an empirical study involving the order 1

*' exponential autoregressive model [cf. Lewis, (1980)3. The weighted

area estimators are seen to perform well for 'large' batch size.

(vi) Denote the random variable corresponding to the half-length of

the weighted area estimator by H. Following Schmeiser (1982) and

*. Goldsman and Schruben (1984) (G-S), it is easy to derive the

* following:

]= t (2/b)1/2 r((b+l)/2)

E.-I ] n b,1-*/2 P(b/2) '

Var(H) a2 2 2 1 r((b+l)/2) ]2 and
S b , 1 / 2  b P(b/2)

The coverage probability,

Pr{|X n-kI < HI = F(t b,a/2 - F(-t b,l_ ) , where

r(.) is the gamma function and F(.) is the c.d.f. of the noncentral

IL " " .. . ." "" " " 
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o4 correlaton amongst batt hes which are encountered when using the

area estimator
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Tat'le I - Choices of Weights and Reuiilting V's

weighting
choi ce cj, j=l,...,m V from (1)

1, 1 1/12

2- 1/45

2• " r jff 1-1

4 + 1 > + 1-2
m2E~~ 320~ 32 12

1 2 1 + 2
1 ) + (E >0) +L

, - 4032 120 12
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Iable 2Ii'er4ormance of weighted area confidence interval estimators for the
mean o4 an LAR(l) proccss with coefficient 1, = 0.2 and exponential
(mean=l) noise based on 100 independent runs o4 2560 observations
each. [Choices o4 weights are summarized in Table 13.

Nweightinn

choice 1 27 3 4 (e=O) 5(E=O)

Confidence interval achieved coverage (90% desired)

b m I

1 2560 .86 .92 .90 .89 .90
2 1280 .93 .96 .94 .93 .95
5I 512 1 .95 .94 .96 .95 .96

10 256 .93 .93 .94 .95 .96
20 128 .93 .94 .91 .91 .91

Average confidence interval half-length (x 10000)

1 2560 1 1193 1266 1184 1199 1202
2 1280 1 592 612 598 613 617
5 512 1 480 461 486 492 498
10 256 1 440 441 436 444 446
20 128 1 426 423 415 427 426

Sample standard deviation of half-lengths ( x 10000)

1 2560 900 923 876 932 931
2 1280 297 300 298 294 298
5 512 153 149 150 150 149
10 256 103 104 97.5 95.6 93.7
20 128 52.6 50.7 57.9 59.5 65.5

liLA
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labl _ - lypical Small-Sample ValuPr 04 P1 and p.

(m - batch size)

0.5 15 -0.04268 -0.03686

0.5 20 -0.03231 -0.02767

0.5 25 -0.02600 -0.02215

0.0 -- 0 0

-0.5 15 0.19445 0.16427

-0.5 20 0.16964 0.14261

-0.5 25 0.14969 0.12550

-0.9 15 0.42568 0.35214

-0.9 25 0.44111 0.36053

-0.9 50 0.43968 0.35646

-0.9 100 0.41352 0.33456

p.-

.4.
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Figure 1: Correlation of A19A2 versus

batch size m for an MA(1) process with a = -0.5
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